SHEETS 3ll-1 TO 3ll-5
TAINIER GATES ON SPILLWAY CRESTS
DISCHARGE COEFFICIENTS
l. Discharge through a partially open tainter gate mounted on a spillway crest can be computed using the basic orifice equation:

$$
Q=C A \sqrt{2 g H}
$$

where,

$$
\begin{aligned}
& Q=\text { discharge in cfs } \\
& C=\text { discharge coefficient } \\
& A=\text { area of orifice opening in } \mathrm{ft}^{2} \\
& H=\text { head to the center of the orifice in } \mathrm{ft} .
\end{aligned}
$$

The coefficient (C) in the above equation is primarily dependent upon the characteristics of the flow lines approaching and leaving the orifice. In turn, these flow lines are dependent upon the shape of the crest, the radius of the gate, and the location of the trunnion.
2. Discharge Coefficients. Chart 3ll-1 shows a plot of average discharge coefficients computed from model and prototype data for several crest shapes and tainter gate designs for nonsubmerged flow. Data shown are based principally on tests with three or more bays in operation. Discharge coefficients for a single bay would be lower because of side contractions although data are not presently available to evaluate this factor. On this chart, the discharge coefficient (C) is plotted as a function of the angle (B) formed by the tangent to the gate lip and the tangent to the crest curve at the nearest point of the crest curve. The net gate opening is considered to be the shortest distance from the gate lip to the crest curve. The angle is a function of the major geometric factors affecting the flow lines of the orifice discharge. One suggested design curve applies to tainter gates having gate seats located downstream from the crest axis. The other suggested design curve is based on tests with the gate seat located on the axis and indicates the effects of the masonry shape upstream from the crest axis.
3. Computation. Computation of discharge through a tainter gate mounted on a spillway crest is considerably complicated by the geometry involved in determining the net gate opening to be used in the orifice formula. The problem is simplified by fitting circular arcs to the crest
curve used in the design of spillways. Chart 3ll-2 illustrates the necessary computations to obtain the net gate opening and the angle B described in paragraph 2, for tainter gates mounted on spillway crests shaped to $\mathrm{X}^{1.85}=-2 \mathrm{H}_{\mathrm{d}}^{0.85} \mathrm{Y}$. All factors are expressed in terms of the design head (H_{d}). The method shown is applicable to other crest shapes. However, the accompanying design aids, Charts 311-3 and 3ll-4, apply only to standard crests.
4. To initiate the computations, $\mathrm{Y}_{\mathrm{L}} / \mathrm{H}_{\mathrm{d}}$ values of the gate lip are assumed and corresponding values of X_{L} / H_{d} are computed (columns 1 to 6, Chart 311-2). These coordinates are then located on Chart 311-3 to determine the characteristics of a substitute arc. The substitute arc is then used to compute the net gate opening (columns 7 to 14). The point of intersection of the masonry line by the gate opening is determined by similar triangles (columns 14, 15, and 16). Design aid Chart 311-4 can be used to determine the Y_{C} / H_{d} coordinate of the gate opening and masonry line intersection (column 17), and also the slope of the masonry line (columns 18 and 19) which in turn combines with the slope of the gate lip tangent to form the angle β (column 20). If graphical methods are preferred to analytical methods, a large-scale layout will enable the head, net gate opening, and the angle β to be scaled so that the discharge can be computed with fair accuracy.
5. Chart 3ll-5 is a sample computation of the steps involved in the development of a rating curve for a partially open tainter gate. The final computations are dimensional and are believed accurate to within ± 2 per cent, for gate opening-head ratios (G_{0} / H) less than 0.6.

TAINTER GATES ON SPILLWAY CRESTS E GEOMETRIC COMPUTATION
hYDRAULIC DESIGN CHART 3II-2

TAINTER GATES ON SPILLWAY CRESTS GEOMETRIC FACTORS HYDRAULIC OESIGN CHART 3II-3

WATERWAYS EXPERIMENT STATION COMPUTATION SHEET
PROJECT JOHN DOE DAM SUBJECT_ SPILLWAY DISCHARGE
CHECKED BY RRW DATE 8-27-54
FORMULAS

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)	(15)
	$c^{* *}$	$\mathrm{G}_{0} / \mathrm{H}_{\text {d }}{ }^{*}$	$\begin{aligned} & G_{0} \\ & \mathrm{FT}^{2} \end{aligned}$	Y_{L} / H_{d}^{*}	$\begin{aligned} & Y_{L} \\ & F_{T} \end{aligned}$	Y_{c} / H_{d}^{*}	$\begin{aligned} & Y_{c} \\ & F_{T} \end{aligned}$	$\begin{gathered} E L E V Y_{L}= \\ 288+Y_{L} \end{gathered}$	$\begin{gathered} \text { ELEV YC= } \\ 288+Y_{C}= \\ F T \end{gathered}$	$\frac{(9)+(10)}{2}$	$\begin{gathered} \text { POOL } \\ \text { FT } \end{gathered}$	$\begin{gathered} \text { (12)- }-(11) \\ \text { FT } \end{gathered}$	$\mathrm{H}^{1 / 2}$	$\underset{\text { CFS }}{Q}$
67.20	0.676	0.107	3.96	0.100	3.70	-0.0065	-0.24	291.70	287.76	289.73	$\begin{aligned} & 300 \\ & 315 \\ & 325 \end{aligned}$	$\begin{array}{r} 10.27 \\ 25.27 \\ \times 35.27 \end{array}$	$\begin{aligned} & 3.20 \\ & 5.03 \\ & 5.94 \\ & \hline \end{aligned}$	$\begin{aligned} & 2,900 \\ & 4,500 \\ & 5,400 \end{aligned}$
76.06	0.683	0.205	7.59	0.200	7.40	-0.0035	-0.13	295.40	287.87	291.64	$\begin{aligned} & 310 \\ & 315 \\ & 325 \end{aligned}$	$\begin{aligned} & 18.36 \\ & 23.36 \\ & 33.36 \end{aligned}$	$\begin{aligned} & 4.28 \\ & 4.83 \\ & 5.78 \end{aligned}$	$\begin{array}{r} 7,500 \\ 8,400 \\ 10,100 \end{array}$
83.98	0.694	0.304	11.25	0.300	11.10	-0.0022	-0.08	299.10	287.92	293.51	$\begin{aligned} & 310 \\ & 315 \\ & 325 \end{aligned}$	$\begin{aligned} & 16.49 \\ & 21.49 \\ & 31.49 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.06 \\ & 4.64 \\ & 5.61 \\ & \hline \end{aligned}$	$\begin{aligned} & 10,700 \\ & 12,200 \\ & 14,800 \\ & \hline \end{aligned}$
91.20	0.707	0.403	14.91	0.400	14.80	-0.0018	-0.07	302.80	287.93	295.37	$\begin{aligned} & 315 \\ & 320 \\ & 325 \\ & \hline \end{aligned}$	$\begin{aligned} & 19.63 \\ & 24.63 \\ & 29.63 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.43 \\ & 4.96 \\ & 5.44 \\ & \hline \end{aligned}$	$\begin{aligned} & \begin{array}{l} 15,800 \\ 17,800 \\ 19,300 \end{array} \end{aligned}$

$Q=C G_{0} B \sqrt{2 g H}$
$H=P O O L E L E V-0.5\left[E L E V Y_{L}+E L E V Y_{C}\right]$
$Q=C G_{0} \mathrm{~B} \sqrt{2 g H}$
$H=P O O L E L E V-0.5\left[E L E V Y_{L}+E L E V Y_{C}\right]$
DATE_8-25-54

$$
\underline{\square}
$$

JOB_CW804
COMPUTATIONS
** FROM HYDRAULIC DESIGN CHART 3II-1
COMPUTED BY_AAME

$$
2
$$

